Publish

Publications related to CA17111

HOW TO ACKNOWLEDGE COST ACTION CA17111 INTEGRAPE

When the presented results involved the ACTION (e.g. establishment of collaborations, STSMs, ITCs, working group meetings, etc)

Please use the following text to acknowledge CA 17111 INTEGRAPE in all of your future publications related to INTEGRAPE: This article/publication is based upon work from COST Action CA17111 INTEGRAPE, supported by COST (European Cooperation in Science and Technology).

When INTEGRAPE guidelines and catalogues were used in your Manuscript 

Please use the following text to acknowledge CA17111 INTEGRAPE: This article/publication followed the rules and guidelines offered by the COST Action CA17111 INTEGRAPE, supported by COST (European Cooperation in Science and Technology).

*** If you have acknowledged our COST Action in your publication please fill out this Google Form and advise us via email CA17111.integrape@gmail.com.

Publications acknowledging COST ACTION CA17111 INTEGRAPE

  • Calderón L, Carbonell-Bejerano P, Muñoz C, Bree L, Sola C, Bergamin D, Tulle W, Gomez-Talquenca S, Lanz C, Royo C, Ibáñez J, Martinez-Zapater JM, Weigel D, Lijavetzky D (2024) Diploid genome assembly of the Malbec grapevine cultivar enables haplotype-aware analysis of transcriptomic differences underlying clonal phenotypic variation. Hortic Res. Mar 14;11(5):uhae080. doi: 10.1093/hr/uhae080. 
  • D’Incà E, Foresti C, Orduña L, Amato A, Vandelle E, Santiago A, Botton A, Cazzaniga S, Bertini E, Pezzotti M, Giovannoni JJ, Vrebalov JT, Matus JT, Tornielli GB, Zenoni S. (2023) The transcription factor VviNAC60 regulates senescence- and ripening-related processes in grapevine. Plant Physiol. Jul 3;192(3):1928-1946. doi: 10.1093/plphys/kiad050.
  • Velt A, Frommer B, Blanc S, Holtgräwe D, Duchêne É, Dumas V, Grimplet J, Hugueney P, Kim C, Lahaye M, Matus JT, Navarro-Payá D, Orduña L, Tello-Ruiz MK, Vitulo N, Ware D, Rustenholz C. (2023) An improved reference of the grapevine genome reasserts the origin of the PN40024 highly homozygous genotype. G3 (Bethesda). May 2;13(5):jkad067. doi: 10.1093/g3journal/jkad067. 
  • Vigneron N, Grimplet J, Remolif E, Rienth M. (2023) Unravelling molecular mechanisms involved in resistance priming against downy mildew (Plasmopara viticola) in grapevine (Vitis vinifera L.). Scientific Reports. 6;13(1):14664.  https://doi.org/10.1038/s41598-023-41981-x
  • Shi X, Cao S, Wang X, Huang S, Wang Y, Liu Z, Liu W, Leng X, Peng Y, Wang N, Wang Y, Ma Z, Xu X, Zhang F, Xue H, Zhong H, Wang Y, Zhang K, Velt A, Avia K, Holtgräwe D, Grimplet J, Matus JT, Ware D, Wu X, Wang H, Liu C, Fang Y, Rustenholz C, Cheng Z, Xiao H, Zhou Y. (2023) The complete reference genome for grapevine (Vitis vinifera L.) genetics and breeding. Hortic Res. Apr 4;10(5):uhad061. doi: 10.1093/hr/uhad061. 
  • Boban, A.; Vrhovsek, U.; Carlin, S.; Mucalo, A.; Budić-Leto, I. (2022) A Targeted and an Untargeted Metabolomics Approach to the Volatile Aroma Profile of Young ‘Maraština’ Wines. Metabolites12, 1295. https://doi.org/10.3390/metabo12121295
  • Savoi S, Santiago A, Orduña L and Matus JT (2022) Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. Front. Plant Sci. 13:937927. doi: 10.3389/fpls.2022.937927
  • Moretto M, Sonego P, Pilati S, Matus JT, Costantini L, Malacarne G and Engelen K (2022) A COMPASS for VESPUCCI: A FAIR Way to Explore the Grapevine Transcriptomic LandscapeFront. Plant Sci. 13:815443. doi: 10.3389/fpls.2022.815443
  • Soares F, Pimentel D, Erban A, Neves C, Reis P, Pereira M, Rego C, Gama-Carvalho M, Kopka J, Fortes AM (2022) Virulence-related metabolism is activated in Botrytis cinerea mostly in the interaction with tolerant green grapes that remain largely unaffected in contrast with susceptible green grapes. Horticulture Research, uhac217, https://doi.org/10.1093/hr/uhac217
  • Frommer B, Hausmann L, Holtgräwe D, Viehöver P, Hüttel B, Reinhardt R, Töpfer R, Weisshaa B (2022) A fully phased interspecific grapevine rootstock genome sequence representing V. riparia and V. cinerea and allele-aware annotation of the phylloxera resistance locus Rdv1, bioRxiv 2022.07.07.499180 https://doi.org/10.1101/2022.07.07.499180
  • Grimplet Jérôme (2022) Genomic and Bioinformatic Resources for Perennial Fruit Species, Current Genomics ; 23(4) .
    https://dx.doi.org/10.2174/1389202923666220428102632
  • Orduña, L., Li, M., Navarro-Payá, D., Zhang, C., Santiago, A., Romero, P., Ramšak, Ž., Magon, G., Höll, J., Merz, P., Gruden, K., Vannozzi, A., Cantu, D., Bogs, J., Wong, D.C.J., Huang, S.-s.C. and Matus, J.T. (2022), Direct regulation of shikimate, early phenylpropanoid and stilbenoid pathways by Subgroup 2 R2R3-MYBs in grapevinePlant Journal. doi:10.1111/tpj.15686 
  • Navarro-Payá D, Santiago A, Orduña L, Zhang C, Amato A, D’Inca E, Fattorini C, Pezzotti M, Tornielli GB, Zenoni S, Rustenholz C and Matus JT (2022) The Grape Gene Reference Catalogue as a Standard Resource for Gene Selection and Genetic ImprovementFront. Plant Sci. 12:803977. doi: 10.3389/fpls.2021.803977
  • Margaryan K, Melyan G, Röckel F, Töpfer R, Maul E, (2021) Genetic Diversity of Armenian Grapevine (Vitis vinifera L.) Germplasm: Molecular Characterization and Parentage AnalysisBiology, 10, 1279. https://doi.org/10.3390/biology10121279
  • Lalla Hasna Zinelabidine, Rafael Torres-Pérez, Jérôme Grimplet, Elisa Baroja, Sergio Ibáñez, Pablo Carbonell-Bejerano, José Miguel Martínez-Zapater, Javier Ibáñez, Javier Tello (2021) Genetic variation and association analyses identify genes linked to fruit set-related traits in grapevine, Plant Science, Volume 306,,110875, https://doi.org/10.1016/j.plantsci.2021.110875
  • Milišić, K., Sivčev, B., Štajner, N., Jakše, J., Matijašević, S., Nikolić, D., Popović, T., Ranković-Vasić, Z. (2021). Ampelographic and molecular characterisation of grapevine varieties in the gene bank of the experimental vineyard ‘Radmilovac’ – Serbia. OENO One 4: 129-144. https://doi.org/10.20870/oeno-one.2021.55.4.4508
  • Onache AP, Badulescu A, Dumitru AM, Sumedrea DI, Popescu CF (2021) Comparison of some DNA extraction methods from monovarietal must and wines. Notulae Botanicae Horti Agrobotanici Cluj-Napoca49(2), 12349. https://doi.org/10.15835/nbha49212349
  • Martins Viviana, Unlubayir Marianne, Teixeira António, Gerós Hernâni, Lanoue Arnaud (2021) Calcium and methyl jasmonate cross-talk in the secondary metabolism of grape cells, Plant Physiology and Biochemistry, Vol. 165, Pages 228-238, ISSN 0981-9428, https://doi.org/10.1016/j.plaphy.2021.05.034.
  • Martins Viviana, Unlubayir Marianne, Teixeira António, Lanoue Arnaud, Gerós Hernâni (2021) Exogenous Calcium Delays Grape Berry Maturation in the White cv. Loureiro While Increasing Fruit Firmness and Flavonol Content, Frontiers in Plant Science, VOL.12, https://www.frontiersin.org/articles/10.3389/fpls.2021.742887, DOI=https://doi.org/10.3389/fpls.2021.742887
  • Pilati S, Malacarne G, Navarro-Payá D, Tomè G, Riscica L, Cavecchia V, Matus JT, Moser C, Blanzieri E (2021) Vitis OneGenE: A Causality-Based Approach to Generate Gene Networks in Vitis vinifera Sheds Light on the Laccase and Dirigent Gene Families. Biomolecules11, 1744. https://doi.org/10.3390/biom11121744
  • Savoi S, Arapitsas P, Duchêne É, Nikolantonaki M, Ontañón I, Carlin S, Schwander F, Gougeon RD, Ferreira ACS, Theodoridis G, Töpfer R, Vrhovsek U, Adam-Blondon A-F, Pezzotti M, Mattivi F  (2021). Grapevine and Wine Metabolomics-Based Guidelines for FAIR Data and Metadata Management. Metabolites. 2021; 11(11):757. https://doi.org/10.3390/metabo11110757
  • Pimentel D, Amaro R, Erban A, Mauri N, Soares F, Rego C, Martínez-Zapater JM, Mithöfer A, Kopka J, Fortes AM, Transcriptional, hormonal, and metabolic changes in susceptible grape berries under powdery mildew infection, Journal of Experimental Botany, Volume 72, Issue 18, 30 September 2021, Pages 6544–6569, https://doi.org/10.1093/jxb/erab258
  • Theine, J., Holtgräwe, D., Herzog, K. et al.(2021) Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time. BMC Plant Biol 21327 . https://doi.org/10.1186/s12870-021-03110-6
  • Ghaffari, S., Reynard, J.S. & Rienth, M. (2020) Single berry reconstitution prior to RNA-sequencing reveals novel insights into transcriptomic remodeling by leafroll virus infections in grapevines. Sci Rep 10,12905 . https://doi.org/10.1038/s41598-020-69779-1
  • Frommer B, Holtgräwe D, Hausmann L, Viehöver P, Huettel B, Töpfer R, Weisshaar B. (2020)  Genome Sequences of Both Organelles of the Grapevine Rootstock Cultivar ‘Börner’. Microbiol Resour Announc. 2020 Apr 9;9(15):e01471-19. https://doi.org/10.1128/MRA.01471-19
  • Pucker, B.; Schwandner, A.; Becker, S.; Hausmann, L.; Viehöver, P.; Töpfer, R.; Weisshaar, B.; Holtgräwe, D. (2020) RNA-Seq Time Series of Vitis vinifera bud development reveals correlation of expression patterns with the local temperature profile,  Plants, 9 1548 https://doi.org/10.3390/plants9111548 

Related Topics

Frontiers in Plant Science Research Topic: Advances in Grapevine Genetic Improvement: Towards High Quality, Sustainable Grape Production

Editors
Gabriella De Lorenzis
Pablo Carbonell-Bejarano
Javier Tello
Silvia Laura Toffolatti 

Topic_Frontiers

This Research Topic aims to update current knowledge on the genetic strategies fostering wine grape, table grape, and rootstock improvement, as well as to shed light on genes and genetic variation involved in different mechanisms related to the implementation of grape quality traits and grape adaptation to biotic and abiotic stresses. We welcome excellent Original Research and Review articles dealing with various aspects of the identification of key genes for further breeding programs. Manuscripts should address, but not be restricted to, the following topics:

  • Genetic and phenotypic characterization of relevant traits for current grapevine breeding and clonal selection programs;
  • QTL (Quantitative Trait Loci), and association mapping (Genome-Wide and Candidate-Gene Association Studies, GWAS and CGAS) approaches and studies for the identification of candidate genes and genetic variants associated with biotic and abiotic stress adaptation and for fruit quality and productivity improvement;
  • Deep sequencing and RNA-seq studies to identify markers, candidate genes and genetic variants enabling the improvement of vines adaptation to biotic and abiotic constraints and of fruit quality and productivity;
  • Development of new strategies to speed up genetic marker identification and genetic screening in breeding programs;
  • Functional analysis of candidate genes for breeding programs through genetic transformation approaches (such as genome editing, cisgenesis, etc.).